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1 Introduction

In the past, the structure and its control system have been designed independently. Structural design and

optimization, and control system design and optimization, have each been areas of separate research, each

progressing vigorously along its own path. However, spurred on by recent proposals of new, large, highly

constrained space structures, the question has arisen as to whether an integrated structural/control design

procedure might not be more appropriate. The first papers actively investigating the question of simultaneous

structure and control design began appearing in the literature around 1983 [1,2,3]. Since then, there has been

a growing interest in this subject from other authors, although the field itself is still in relative infancy. Using

a conventional design approach for a controlled structure, one would first optimize the structure alone, then
design a control system for this baseline structure. This process may then be iterated until both the structure

and control system meet necessary constraints and objectives.

Some authors ([4,5,6,7], for example) take a "classical" approach to the simultaneous structure/control

optimization by attempting to simultaneously minimize the weighted sum of the total mass and a quadratic

form, subject to all of the structural and control constraints. In this paper, the optimization will be based

on the dynamic response of a structure to an external unknown stochastic disturbance environment [8]. Such
a "response to excitation approach" is common to both the structural and control design phases, and hence

represents a more natural control/structure optimization strategy than relying on artificial and vague control
penalties. The design objective is to find the structure and controller of minimum mass such that all the

prescribed constraints are satisfied.

Two alternative solution algorithms will be presented which have been applied to this problem. Each
algorithm handles the optimization strategy and the imposition of the nonlinear constraints in a different

manner. Two controller methodologies, and their effect on the solution algorithm, will be considered. These

are full state feedback and direct output feedback, although the problem formulation is not restricted solely to
these forms of controller. In fact, although full state feedback is a popular chQice among researchers in this field

(for resons that will become apparent), its practical application is severely limited. The controller/structure
interaction is inserted by the imposition of appropriate closed-loop constraints, such as closed-loop output

response and control effort constraints. Numerical results will be obtained for a representative flexible structure

model to illustrate the effectiveness of the solution algorithms.

2 General Problem Formulation

The integrated control/structure design optimization problem can be stated as follows: find the vector of

structural and controller parameters that minimizes the mass of the structure subject to a set of prescribed

stochastic disturbances, with limitations on the available control energy and on a set of allowable output

responses. This can be written in the form of a nonlinear mathematical programming problem as
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Minimize, with respect to p, the weight J(p), subject to

g(p) < 0

"_ = Fz + Gu + G_u_

E[u_R_ui] 1 _< 0 for i = 1,..., nt_
gcc, - fl/2

goc,- a_ 1 < 0 for i- 1,...,na

Yd. ---- Hd, x for i = 1,..., na

(1)
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is an N-vector of design variables,
is an m-vector of structural constraints,

Is an n-vector of state variables,

Is an n_,-vector of control forces,

Is an nw-vector of stochastic disturbances,

is the (n x n) matrix containing the system dynamics,

is the (n x nu) matrix containing information on the

locations and orientations of the actuators,

is the (n x nw) matrix containing information on the points

of application and orientation of the disturbances,
is the i t_ control effort constraint cost function,

is the nu,-order partition of u representing the control

forces involved in g¢¢,,
is the maximum allowable value of the i th expected control

effort function E[uiTR_ui],

is an (nu, x nu,) control force weighting matrix,
is the i th output response constraint cost function,
is the maximum allowable value of the i _h expected output

response function E[y_iWiyd_],

is an (nd_ x nd_) output response weighting matrix,
is the i th design output ntis-vector,

is an (nd_ X n) matrix giving the relationship between

the state variables and Yd_,
is an N-vector of minimum design variable values, and

is an N-vector of maximum design variable values.

The side constraints are the strict bounds Pl and Pu on the design variables, and are vector inequalities

that are imposed element by element. These design variable bounds are not included explicitly as constraints

in the problem formulation. Note that the structural weight and the structural constraints g will in general
not be functions of the controller design variables unless the controller mass is included in the design. Note

also that gcc, is a weighted mean square control effort, and goc_ is a weighted mean square output response.
Multiple output response constraints are allowed, although only one of these will in general be active at the

optimum design. However, all of the control effort constraints will generally be active at the optimum design.
In this work w is a zero mean Gaussian white noise disturbance with covariance Xw. The structure will

respond to this disturbance with some transient behaviour, in addition to a steady-state response. It seems
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reasonableto optimize the structure for the steady-state response to the disturbance rather than the transient

response because the transient behaviour will normally be of secondary importance to the response objectives

(such as long term pointing accuracy). Also, for steady state optimization, the differential equation constraint

(state equation) can be replaced with a steady state covariance equation, so that the control effort and output

response constraints may be recast in terms of this covariance. Therefore the two-point boundary value problem
is eliminated and the numerical solution of the problem is significantly simplified.

2.1 Full State Feedback Control

The simplest form of feedback control is to feedback the entire state vector, with u = -Kz, where K is the

(nu x n) state feedback gain matrix. The controller design variables for this case will be the nun elements
of K. Substituting this control into the state equation, and assuming that the disturbance w is zero mean

Gaussian white noise, the state covariance matrix X for this case can be found from the Lyapunov equation

FaX + X F_ + GwX_a T = 0 (2)

where Fd = (F - GK) is the stable closed-loop dynamical matrix for the full state feedback case, X = E[zz T]

is the (n x n) symmetric state covariance matrix, and Xw = E[ww T] is the (nto x nw) symmetric covariance
matrix for the stochastic disturbances.

Expressions for the controller constraints in terms of this covariance matrix can then be obtained as

tr[KTR_KiX] - 1 for i = 1 ..... n_ (3)

tr[H_WiH_,X] 1 for i = 1,...,n, (4)
goc, -- Ol 2

where Ki is the (nu, x n) partition of K corresponding to ui. It is assumed that the ui are independent, and
that u and K are ordered as

uT--[ UlT UT ... lgT, 1, K T-_ [ K T K T ... KnT ] (5)

Note that _-]ff_l nm = nu, and that the columns of G can be interchanged to force condition (5) to be satisfied.

Using full state feedback, the first-order necessary (Kuhn-Tucker) conditions for optimality can be analytically

solved to give [8]

K = R-1GTA_, where FTAz + A_F - A_GR-IGTAr + W = 0

and where R and W are respectively the (nu x nu) and (n x n) matrices defined as

(6)

R=diag \ _i ] R_ , W = Z _ a_ )
i=1

The variables Au, and ),y_ come from the Kuhn-Tucker conditions, and are the Lagrange multipliers associated
with the i th control effort and output response constraints respectively.

Equations (6) define the solution to the optimal control problem

rain J¢= [zTWz+uTRu]dt (8)

where K is the optimal steady-state gain matrix, and At is the steady-state solution to the associated Riccati

equation. Although this LQR property only holds true at the optimum point, it is computationally convenient
to assume that at every point in the design cycle, the control design variables will be found as the solution to the

optimal control problem (8). Therefore, the numerical optimization problem can be reduced to optimization
over just the structural design variables, along with an optimal control problem solution which will be a function

of the Lagrange multiplier vectors X_, and X_. The immediate benefit of this is a reduced dimensionality

nonlinear programming problem. In addition, since the regulator solutions always give a stable closed-loop
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system,noexplicitcheckmustbeperformedonthesystemstabilityduringthesolutionprocedure.TheLQR
assumptionin thisprobleformulationissimilarto theapproachtakenin [9,10],andothers,whereR and W
are fixed, and not chosen to satisfy the constraints.

2.2 Direct Output Feedback Control

For most real systems, the state vector will be very large, and the use of full state feedback would result in a

controller of unacceptably high dimension, assuming additionally that the entire state is available. However,

usually only a small subset of the system states will be available to the designer, in the form of the output

measurement vector. These can include actual system states along with linear combinations of the system

states, in the form y = Hz, where y is the n_-vector of outputs and H is the (n_ x n) output matrix giving the
relationship between the outputs and the system states. If these output states are to be used in the feedback

loop, the resulting control is termed direct output feedback, with the control forces defined to be u = -Ky,
where K is the (nu × n_) output feedback gain matrix. In this case, the controller design variables will be the
nuny elements of K.

Substituting this control into the state equation, the state covariance matrix X for this case can be found

as the solution to the same Lyapunov equation (2), except that now the closed-loop dynamics are given by

Fct = (F - GKH). Note that since K does not satisfy any special conditions (such as the LQR conditions),
the closed-loop system Fez is not guaranteed to be stable for any K. If Fcl is unstable at any stage in the

solution procedure, the covariance matrix X cannot be found from equation (2). Therefore, for this case, hard

constraints on the closed-loop system eigenvalues must be imposed at every step in the design proceedure.

"Hard" in this sense means that special precautions must be taken in the solution procedure such that these
constraints can never be violated.

Expressions for the controller constraints for direct output feedback in terms of the covariance matrix can
then be found to be

tr[Hr KT RiKi HX]
gCC i - 1 for i = 1,...,na (9)

tr[H_ WiHd, X]
go_, = 2 - 1 for i = 1,...,na (10)

ot i

3 Solution Algorithms

In the general problem formulation presented in the previous section, the constraint functions are generally

highly nonlinear implicit functions of the design variables. Solution of this problem could be attempted by the
direct application of nonlinear programming techniques; that is, using the exact functional expressions for the

constraints. However, this approach quickly becomes computationally very expensive as the dimensionality

increases since the full objective and constraint functions must be evaluated at every step, and their respective

gradients at most, if not all, steps thoughout the design procedure. Such evaluations tend to be computationally
very expensive.

Approximation techniques, where the implicit nonlinear problem is replaced by a sequence of explicit

approximate (although not necessarily linear) problems, have been shown to yield efficient and powerful al-

gorithms for structural design optimization (see, for example, [11,12]). In this paper, two solution techniques

based on approximation techniques will be tested on the integrated control/structure design optimization prob-

lem. The methods will be compared with respect to the ease of use, generality of application, and numerical
robustness to changes in move-limits and other solution parameters.

3.1 Sequential Nonlinear Approximations

In this method, the fully constrained nonlinear optimization problem is solved by the iterative construction

and numerical solution of a sequence of explicit approximate problems. The approximate problems are first-

order Taylor's series expansions (with respect to either the inverse design variables ([13], for example), or with

respect to hybrid design variables [14]) of the objective and constraint functions. Depending on the intermediate
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variableschosen,theapproximatefunctionsmaystill be nonlinear functions of the design variables. Therefore,
the numerical solution is accomplished using a mathematical programming code, specifically the modified

method of feasible directions as implemented in ADS [15].

The solution process begins with some initial structure, which is analyzed using the finite element technique.

At this point, the gradients of the active constraint set are evaluated, and the approximate problem is formed,

with respect to the current design. Expressions for the gradients of all constraints considered can be evaluated

analytically. The approximate problem is solved with ADS using an active constraint set strategy to reduce

the dimensionality of the approximate problem by deleting the inactive constraints. Move-limits on the design

variables are imposed during the solution to ensure that the design remains within the region for which the

approximation functions are of acceptable quality. The choice of move-limits and how they change can have a

significant effect on convergence, and will often be determined from numerical experience with the particular

problem at hand.
After the solution of the approximate problem, the structure and its control system are deemed optimal

if a convergence test on either the absolute or relative objective function change over a specified number of

successive global iterations is satisfied. Otherwise, the objective and active constraint gradients are evaluated

for the new design, a new approximate problem formed, and the process above is repeated in an iterative

manner. The solution procedure ends when the design variables converge, or when the number of iterations

exceeds some preset maximum.

Scaling the structure and controller to the closest constraint surface may be possible in some cases, because

of the special assumed form of the controller. Scaling to structural constraints has been performed in other

work (see [16]) and will not be covered here. If full state feedback is used, it is possible and practical to scale
the structure to the closest control effort constraint and closest output response constraint simultaneously. The
variables with which the structure is scaled are the structural design variables (elemental areas or thicknesses),

and the Lagrange multipliers associated with the two controller constraints A= and Av (where for clarity, and

without loss of generality, the subscripts on the A's that refer to the particular control effort or output response

constraints under consideration have been dropped).
Note that changing the values of A_ and A_ cannot independently change the values of u,_, = tr(KTRKX)

and ym, = tr(H_WHdX), because in the LQR problem, only the ratio of A_ to Ay is important. One can

choose the ratio (AJAr) to satisfy one of the control constraints -- say umj. Then Ym8 will not in general be

satisfied. Suppose ym0 is too large (i.e. ym_ > ct2) at the particular point where urn, is satisfied. Then the only

way one can satisfy the Ym, constraint is to increase the sizes of at least some of the structural members. This
seems reasonable because if the control constraints could be satisfied by simply choosing appropriate controller

parameters, then there would be no interaction between structural optimization and controller optimization.

Intuitively, it can be seen that this is not the case. Note that each member of the structure will be scaled

by the same amount to fulfill our goals. Obviously, this method is not absolutely mandated, and some other

approach could be used where the design variables are not scaled equally. However, this would then be resizing

rather than scaling, a process normally left to the nonlinear programming algorithm.

The final scaling aim is to set urea = /_2 and ym, = a 2. To perform the scaling, it is assumed that, at

iteration i, the values (u,_,)i and (Ym,)i will change, as a result of changes to ($_)i and the (Pj)i, according

to the equations

(Urn,)i+l __ Aai /_b, (Yrns)i+l __ A¢, did, (11)
-,+,-,*,' '÷' ,+,

where at, hi, ci and d/are constants, and where

(_u)i+l _i+l (Pj)i+l (12)
AI+I-- (_u)i ' -- (Pj)i

If initial (educated) guesses for these constants can be made, they can be updated in an adaptive manner

during the scaling proceedure.
Move-limits are imposed on the design variables during each approximate problem solution. This is done

in an attempt to restrain the design variables to a region in which the explicit function approximations remain

reasonably accurate. However, deciding how to impose these move-limits is a non-trivial task. The local curva-

ture of the design space (i.e. how nonlinear are the actual constraint surfaces in the region about the expansion

point of the approximations) will determine the move-limits, with more strict move-limits applied in regions
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of highcurvature, and less strict move-limits imposed in regions of low curvature. Since second-derivative
information is required to estimate curvatures, and since such evaluations are very expensive computationally,

imposing move-limits is usually reduced to an art based on past experience. Quasi-Newton methods obtain the

second derivatives using only first derivative information, however, these methods typically take N iterations

to fill the Hessian, and can be very costly if N is large.

For the purpose of this work, a move-limits factor 7 is imposed in an exponential form. If the current design

variable and approximation expansion vector is p, then the upper and lower bounds on the design variables
for the current approximate problem are defined as

1
Pu = _/P, Pt = -P (13)

7

where "r __ 1. The limits specified in equation (13) must be imposed element by element. Note that since

the design variables in this example will be structural design variables only, they are restricted to be positive.

Obviously, equation (13) must be modified if the design variables can be negative. The exponential form of

the move-limit factor is defined by the particular choice of 7rnin and %,_az (typically 1.2 and 1000 respectively

in this work).

3.2 Continuation and Sequential Linear Programming

The complex nature of the constraint functions in the nonlinear optimization problem, especially the con-

troller constraints, leads to various convergence problems in the context of a classical gradient based nonlinear

programming code such as ADS. As the problem dimensionality increases, convergence will usualy become
increasingly difficult to accomplish, as step sizes reduce to satisfy the local linearity assumptions inherent in

gradient based solution techniques. Another method for the solution of mathematical programming problems
that has recently become popular is the use of continuation methods to impose nonlinear constraints cou-

pled with sequential linear programming (SLP) [17,18]. The continuation procedure is a conceptually simple

method of applying restrictive constraints gradually from less restrictive ones, which replaces the most de-

manding constraint functions of the form g(p) __ 0, by a set of neighbouring constraint functions _i, defined
by

_i(Pi, 7i) = g(Pl) - (1 - 71)g(Po) __ 0 for i = 0,..., M

where P0 is the arbitrarily chosen" initial design point, and 7i is a continuation parameter satisfying

(14)

0 : _f0 _ _fx _'" _ _M - 1 (15)

Note that for To = 0, when p = P0, the new constraint function g0 is identically satisfied. If convergence

is acheived for 3, -- I, then the original constraints will be recovered in M steps. The step size A T - 7i - 7/-1

(and hence M), can be chosen small enough so that assumptions on local linearity can be almost arbitrarily
satisfied.

Linear Programming (LP) methods are a powerful approach to handling a large number of locally linear

constraints, and due to the wide availability of very efficient LP codes, are an attractive alternative to nonlinear

programming methods. The neighbouring problems generated by the continuation procedure can be written
in the form

Minimize J(Pi), subject to _i(Pi,Ti) <_ 0 (16)

To transform these equations into a linear programming problem, the equations are linearized about the current

point Pi, and move-limits on the maximum parameter changes allowable locally are imposed. Expanding the

objective and constraint equations in (16) to first order in a Taylor's series expansion about Pi gives the locally
linearized problems in linear programming form as
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MinimJze, withrespecttoApi, AJi=[O_p] Api, subject to
P,

aQi(Pi,7i)] Ap i + g(pi) -- (1 -- 7i)g(P0) < 0 (17)
Op Jp,

-e <_ Api < •

for i = 0,..., (M - 1). All elements of c are assumed positive, and the vector inequality is imposed element
by element.

The algorithm begins with an initial structure, which is analyzed using the finite element technique. The

initial problem (70 = 0) is solved, and the continuation parameter 7 is incremented from 3'0 = 0 by A 7 to
71. Note that if initially K = 0, so that the control effort allowed for the initial local problem is zero, this

initial problem becomes a pure structural optimization subject to the dynamic output repsonse constraints.

The increment A 7 is set by an a priori choice of M, the number of continuation steps, although A 7 need not
be constant throughout the solution procedure. Successful implementation of the continuation method has

been reported when A 3, was chosen as initially quite small and increased to a larger value during the solution

[18]. The choice of A 7 is closely coupled with the choice of the nominal design variable move limit vector e0.

There is in fact a tradeoff between the satisfaction of the local linearity assumption through e, and the ability

to converge to the neighbouring problem through A 7. Usually, for each particular problem, some numerical

trial and error will be required to find those values of e0 and A7 that yield an efficient solution technique.
The gradients of the objective and constraint functions are calculated at the current design, and then the

associated linear programming problem (17) is solved by a linear programming code. In this work, the linear

programming routine E04MBF from NAGLIB (National Algorithms Group LIBrary) was used, although other

routines inserted at this point should provide the same solution. Since the local linearity assumption will

never be exactly satisfied, the actual constraint values at the new point, specified by the solution to the linear

programming problem, will be different than that predicted. Therefore, the constraints Gi may not be satisfied

following the linear programming solution step.

Since a converged subproblem solution is required before increasing the continuation parameter, this local

problem is iterated locally until convergence is obtained. At each local iteration, new gradients are calculated,

and the move limits on the design variables are reduced so that • = ce0, where a value of c = 0.75 was used

in this work. If convergence to the local problem does not occur within 15 iterations (where move limits are

about 1% of their nominal values), the move limits are increased to their nominal values e0, and the local
iterations are repeated. Numerical experience with this algorithm has shown that this procedure is flexible

enough numerically so that converged subproblem solutions can be obtained in a reasonable number of local

iterations, as long as the neighbouring problems are "close enough". Practically, this means that either the

constraint values of the initial system should be "close" to their final desired values, or that M should be

large. Once the local problem has been solved, the continuation parameter 3' is incremented, and the new local

problem solved as before. At the M tn continuation step, 7 = 1 and the original problem is recovered, so that
the solution to the M th local problem is the solution to the original problem.

If closed-loop stability constraints are violated at any stage in the solution procedure, these must be

imposed immediately. To achieve this, it is possible to employ a method that never requires the calculation of

the closed-loop eigenvalue derivatives, saving considerable computational expense. Of course, i f in addition to

overall stability there are constraints on closed-loop damping ratios or bandwidth, then the evaluation of the

closed-loop eigenvalue derivative may be necessary at some point. The method used in this paper is to simply

bisect Api and perform another analysis until a stable system configuration is obtained.

4 Gradient Analysis

For the numerical optimization procedure to be practical, especially as the dimensionality increases to realistic

structures, it is essential that it be possible to evaluate the first-order sensitivities of the complex constraint

functions in an efficient manner. The objective function (the weight) is a linear function of the finite element
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thicknesses and/or cross sectional areas (for truss type finite elements), so that its gradient is easy to calculate
at any point in the design space.

4.1 Gradients for the case of Full State Feedback Control

The gradients of the controller constraints with respect to a structural design variable pj are given by

0pj - fl_tr[k,--_-p/" "+KTR_ X+:PiT/j (18)

Ogo_, I [/cgH_ T OHd,_ ]Opj -- a_tr _-_pj WiHd, + HdiWi--_pj ) X +Qi?'lj (10)

where :Pi, Qi, and 7/j are evaluated using the following set of equations:

FTT_i + 7)iFcz + KTRiKi = 0

FgQi + QiFcl + H_WiHd, = 0

ror_,x xOr_ OGw T o_1
n_=t--_-p_ + -b-ffp+-b-ffpX,oa,_+a,_x_--_-pi]

GOK, _OFa OF OaK_ "_PJ )

OK _ R_ 1 lOGrA, GTOA=I
Opj t Opj '_ -_pj J

,oT+ Fo,=- ^=+A,

(20)
(21)

(22)

(23)

(24)

(2_)OGU) owlOpj ) +--_p_

OW

_ (26)
Note that gradients with respect to controller design variables need not be evaluated since these design variables
were effectively removed from the optimization problem by the LQR constraint.

4.2 Gradients for the case of Direct Output Feedback Control

The gradients of the controller constraints with respect to a structural design variable pj are given by

"gee, 1 [(_ OH) ]- -_tr K_R_KiH + HTK_R_Ki _ X + YiAfjOp_ _2 '

Ogo<, 1r/OHm, OH,,,) ]-- L--_.2tr + H_Wi X + ZiAf i

where Yi, Zi, and )_j are evaluated using the following set of equations:

(27)

(28)

_j "--"

F_3_i + YiFa + HT KiT RiKiH = 0

F_Zi + Z,F_z + H_WiHd, = 0

-gff÷-o-ff . .

__( GKOH_
OFa OF OG KH -
Opj _pj Opj Opj )

(29)

(30)

(31)

(32)
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Thegradientsof the controller constraints with respect to the elements of the gain matrix K can be written

in matrix expression form as

Og¢e, 2 [{_iKH_Gryi} XHT]

Ogo¢, _ 22 [GT ZiXHT]
OK a i

Os ] Oswhere, for scalar s and matrix A with elements aij, -_ q = _ao, and where

_=diag {0 ... 0 R_ 0 .-- 0}(..×..)

Note that the R_ in equation (35) is of order (n,, x n_,), and is in the i th diagonal block of 7_.

(33)

(34)

(35)

5 Example: The DRAPER I Teterahedral Truss Structure

The DRAPER I structure [19] is a tetrahedral truss attached to the ground by three right-angled bipods, as

shown in Figure 1. Although attached to the ground, this model will act as a typical flexible structure pointing

subsystem (e.g. antenna, radar, optical) attached to a rigid core. Any motion would then be with respect to

this rigid core, and transmit forces to it. Consequently, this model has no rigid body degrees of freedom. The
finite element model has 12 truss elements, since the joints are pinned and transmit no moments. There are

four nodes that are free to move in all directions, so the model contains 12 degrees of freedom. The structural

design variables are the cross-sectional areas of each of the 12 truss elements. Since there are 12 degrees of
freedom in the model for this structure, the state-space model will be 24 th order. There will be 6 inputs

corresponding to the 6 legs of the structure, and a varying number of outputs, depending on the problem at
hand.

For the purposes of this work, material parameters of p = 0.1 lb/in and E = Young's Modulus = 20 kpsi

were used. The dimensional values E and p were chosen to give initial numerical values of structural frequencies

for the dimensional model roughly comparable to those of the non-dimensional model. The model contains

no nonstructural mass. Elements 7 through 12, the three right-angled bipods, take on the duties of force

actuators (and possibly colocated velocity and/or displacement sensors). Only one output response constraint
is defined (ha = 1), with the design output vector Yd representing the line-of-sight error of the top vertex [(x, y)

displacements of vertex 1]. The disturbances, labelled wl and w2 in Figure 2, are assumed to be independent,

zero mean, Gaussian disturbances with intensity 1.0.

The damping added to the state space system will depend on the state space realization used. For cases

_here a realization based on physical variables is used, the damping matrix C is formed to be C = 0.1M +

0.001K,, For cases where a realization based on modal variables was used, the damping ratio of each mode

was specified to be 0.1% of the modal frequencies during the formation of the state matrices. The weighting

matrices R and W are set to the identity matrices, so that equal weighting is given to all components of u and

Yd" The minimum cross-sectional areas for all elements was specified as 0.1 in 2. For this problem, no static

structural constraints were specified in this model of the DRAPER I structure, the intent being to investigate

the effect of the closed-loop controller constraints on the structural design optimization.

5.1 Full State Feedback Control

In this section, the sequential nonlinear approximations solution algorithm, with the addition of the scaling

procedure outlined in Section 3.1, is applied to the full state feedback control of the DRAPER I structure.

The effect of the scaling procedure used here can be determined by applying the sequential approximations

algorithm in the form of a direct output feedback problem with H = I with no scaling assumed. The

continuation solution algorithm is also best handled in the form of a direct output feedback problem since

no special scaling is assumed. Both solution algorithms applied to the case of full state feedback are discussed
in Section 5.2, where direct output feedback control is considered. For brevity, only limited results for both
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controllermethodologies are presented in this paper, but a full discussion of this example can be found in
reference [20].

Runs were made optimizing the DRAPER I structure using an inverse design variable approximation for

all constraint functions. The initial structure was defined with all structural design variables set at 10 in 2, and

with the Lagrange multipliers _u and _ set at 1.0. This set of initial conditions will be termed the symmetric

set of initial conditions, for they specify a structure with a number of vibrational modes of the same frequency

(repeated eigenvalues). A range of allowable expected output response (_2) of 1 x 10 -5 in 2 to 1 x 10 -4 in 2 in

steps of I x 10 -4 in 2, and allowable expected control effort (/_2) of 50 lb _ to 80 lb 2 in steps of 10 lb 2 were used.

Table 1 summarizes the resulting minimum weight in pounds found for the case where a state-space real-

ization based on the modal displacements and velocities was used. Intuitively, two trends would be expected
in the data displayed in Table 1. The optimum weight should decrease as the allowable control effort/_2 is

increased at constant allowable output response _ (left to right across the table), and the optimum weight

should decrease as the allowable output response _ is increased at constant allowable control effort/_2 (down
the table). With reference to Table 1, we can see that this trend is observed in a macroscopic sense only, there

being several examples where this trend is not observed. For example, considering the first column of Table 1,

which corresponds to/_2 = 50 lb 2 for varying _2, we see only two exceptions to the expected trends, these
being at _2 values of 6 x 10 -5 and 9 x 10 -s. Similar results are observed in all other columns and rows of

Table 1. Results obtained using a state-space realization based on the physical displacements and velocities of

nodal points are more consistent than when using the modal variables, although still not totally uniform. It

might be pointed out that the results when using a physical realization were consistently easier to obtain, there
being no need to alter the nominal value of 7,,u, to obtain convergence, and the number of global iterations

required for convergence being consistenty lower.

Some understanding of these contradictory results can be found by considering Table 2, which gives the

optimal element areas found for/_2 = 50 and for the varying _2 corresponding to the first column of Table 1.

Also given in this table is the number of global iterations required for convergence, the final values of the

Lagrange multipliers (which then defines the LQR controller), and the initial value of the structural design

variables (all the same for the symmetric set of initial conditions) at which the initial scaled system satisfies the

constraints. Immediately apparent from Table 2 is a number of seemingly separate regions of the design space
into which this structure has converged. For example, the final designs for _2 = 5 x 10 -s and _2 = 7 x 10 -s

seem to be similar in relative structure. Here, "similar" refers to the relative sizing of the structural members,

in that design variables that are "larger" in one design are "larger" in the other. Both these designs are
however distinctly different from those for _2 = 1 x 10 -5 and _2 = 3 x 10 -s, which themselves are similar.

The conclusion seems to be that we are converging into different regions of the design space with our solution
algorithm, and that there are numerous local minima. Several columns of Table 2 seem to define their own

region of the design space, being dissimilar to any other column. In other words, our design space seems to
have multidimensional corrugations leading to multiple local minima. The solutions will lie somewhere on the
intersection hyperplane between the surface of constant allowable output response and the surface of constant
allowable control effort.

This corrugated nature of the design space can be illustrated by considering the solutions obtained, for the

same constraint case, when starting from different initial conditions. For the case of/_2 = 75 and a2 = I x 10 -5,

Table 3 summarizes the results of runs made when modal state space realizations were used, and when only the

initial conditions are varied. The different initial conditions are defined by setting all structural elements equal

except the first (element 1), to which is added a percentage of the size of other elements. Even with this limited
variation in the initial conditions, there are seemingly many distinct regions in the design space into which the

system may converge. A picture of the constraint surfaces as a one-dimensional slice of the multidimensional

space will emerge if these optimal structures are varied into each other in a linear fashion, and the constraint

values are calculated between each case. That is, the structural design variables and Lagrange multipliers are

changed linearly from the optimal values in one case to those in another case. Then the constraint surfaces

obtained would be those seen when travelling in a straight line between each successive point.

The results of such an analysis are shown in Figures 3 for the cases corresponding to those given in Table 3.

As expected, the weight varies linearly between the cases, but it is the constraint curves that are much more

revealing. For example, considering Figure 3, one can see that between case 1 and case 2, there is a "ridge"

of output response larger than the maximum allowable value. Similarly, the control effort first decreases, then

also increases to a ridge of high value. This corresponds to a hump in the constraint surfaces between the two
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points in the design space. Assuming that we would see such behaviour when moving in every direction away
from case 1 and case 2, rather than just in a direction between the two as shown in Figure 3, then the design

points corresponding to these cases would represent local minima. In this situation, the design can become

"trapped" in such a locally convex region, causing the solution algorithm to converge to different points.

With reference to the same Figure 3, one can see that both the output response and control efforts are

virtually constant between cases 2 and 3, while the weight increases slightly from 2053.0 lb to 2090.6 lb.
This indicates that case 2 and case 3 actually represent the same optimal solution, with the difference being

accounted for in the variance allowed by the convergence criteria used. The direction in the design space

represented by the movement from case 2 to case 3 would lie in the intersection hyperplane of the surfaces of

constant control effort and output response constraints, and would be at a shallow angle to the linear surface

of constant weight. Figure 3 graphically illustrates a design space that is a very complicated function of the

design variables, in which multiple local minima abound.

There are some other tests that can be made on the hypothesis that the design is becoming trapped in

local minima. If the design is actually trapped in a local minimum, the solution should stay in the vicinity of
that minimum if the problem is changed only slightly. That is, if a converged solution is used as the initial

conditions for an optimization run where the constraint objectives are changed by a "small" amount, then the

new problem should converge to a point that is "close to" the initial point. Table 4 represents such a situation.
Here, the solution was first obtained for the case where/_2 = 50 and a 2 = 1 x 10 -5, and where a modal state

space realization and inverse design variable approximations were used. This converged solution was then used

as the initial conditions for the cases f12 = 50 and a _ = 2 x 10 -s, and f12 = 60 and c_2 = 1 x 10 -5. Moving

down each column, and across the top row, of Table 4, the converged solution from the previous case was used

as the initial condition for the new problem. As can be seen from Table 4, the two expected trends in the data,

as mentioned previously, are now observed without exception. The optimal solutions for the first column of
Table 4, corresponding to the cases where /_2 = 50, are given in Table 5 The solutions now appear to be in

the same local region of the design space, as evidenced by the relative sizing of the optimal structures. For
example, note that in all converged designs, structural elements 9, 10, and 12 are at their lower gage limit of

0.1 in 2, and that the first structural element is the largest by far. The optimal solutions for the/_2 = 60 cases

from Table 4 also appear to be in this same region of the design space. These results test the hypothesis that

designs are converging to local minima, and indicate that the local optima are real and not simply figments of

a numerical imagination.

5.2 Direct Output Feedback Control

Recall that when using direct output feedback, no simplifying assumptions can be made regarding the controller

design variables (elements of K), such as the LQR assumption used in the case of full state feedback. Therefore,

no scaling of the structure and controller to the closest constraint surface is performed. If a full state feedback

case is to be solved in the form of direct output feedback with H = I, the number of design variables will

increase significantly over the number of design variables created when other types of controllers are considered.

This is because the number of states in the plant model will generally be large for anything but trivial systems,

hence K will have many elements, all of which will be treated explicitly as design variables. However, such a
situation is considered here to aid a comparison between the two solution algorithms, and the results obtained

in the previous section. For the continuation algorithm, convergence was obtained after the specified number

of global iterations, set by the specification of A 7. Also note that, since only one each of the output response
and control effort constraints are specified at this stage (no = 1, n_ = 1), these can both be set as equality

constraints without loss of generality since they will both be active at an optimum.

Table 6 gives the optimal weights found using the sequential approximations solution algorithm in the case
when a physical state space realization and inverse design variable approximations are used, for/_2 = 50 and

_2 = 60, and for varying a 2. Compared to the similar case when scaling was performed, the optimal weights

found here are larger in every case. Additionally, the solution times were significantly larger because of the

number of iterations required for convergence. Note that some values in Table 6 are for situations where an

average steady state value was obtained, but where the design was jumping around too much over each global

iteration for convergence to occur. This was so even though the move-limits for every case in Table 6 were

set at a relatively small :t:2.5%. A smaller move-limit would aid convergence, but slow it considerably. Also,

smaller move-limits may cause premature convergence if the design is at a point where the constraint surfaces
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and the surface of constant weight are nearly parallel.

Table 7 gives the optimal weights found using the continuation algorithm for the same cases listed in Table 6.
All cases listed were obtained with the continuation parameter A7 = 0.01 until 3' = 0.5, when A3' became 0.02,
so that for every case convergence was achieved in 75 global iterations. Also listed in Table 7 are the move-
limits on the maximum parameter changes allowable locally (_ in Section 3.2). These are set to give a tradeoff
between the satisfaction of the local linearity assumption and convergence to the local neigbouring problem,
and must be found by numerical experimentation. Note that in both situations represented by Tables 6 and
7, minimum move-limits on the elements of K are set so that these elements can change sign if desired.

The solutions given in Tables 6 and 7 were obtained when the initial structure was defined with all truss
elements of equal cross-sectional area. The particular values for this area are given in Tables 6 and 7 for
each case, and were chosen so that the initial output response was "close to" its desired final value. With
all structural elements at 120 in2, 90.0 in 2, and 60.0 in_, the initial output responses were 2.067 x 10-5,

3.674 x 10-", and 8.266 x 10 -s respectively. The initial control effort was zero of course, since all elements of
K were set initially to zero.

Comparing the optimal weights from Tables 6 and 7, it can be seen that those obtained using the con-
tinuation solution algorithm are significantly lower than those obtained using the sequential approximations
solution algorithm in every case. The optimal weights are also much more consistent, in terms of the expected
trends as a 2 increases, when using the continuation method. Convergence was obtained for every case listed
in Table 7, whereas for three of the cases listed in Table 6, no convergence was obtained within 300 iterations.
The reason for the convergence failure can be illustrated by considering the convergence histories given in
Figures 4 and 5, for typical cases from Tables 6 and 7 respectively. The inset in Figure 4 shows some of the
histories toward the end of the solution in more detail. These can be seen to be.very rough, as compared to

the histories in Figure 5 which are smooth everywhere. These parameter oscillations for the sequential approx-
imations solution technique are indicative of a move-limit set too high, so that the local linearity assumption
is violated. However, since the convergence is very flat toward the end of the solutions, a smaller move-limit is
likely to cause premature convergence, or to significantly slow down the convergence for very little additional
objective reduction.

The optimal weights found using the continuation method listed in Table 7 compare very favourably with
those found for the same cases (f12 = 50 and varying a2) when the full state feedback LQR assumption was
used to simplify solution. In almost every case, the optimal weight is approximately equal to or lower than
those found earlier. However, the sequential approximations solution algorithm results are much worse, being
significantly larger than the optimal weights found earlier in every case. The sequential approximations solution
algorithm performs so poorly because it tends to become trapped in a local minimum close to the specified
initial conditions.

Consider now cases where the full state is not available for feedback. In the DRAPER I structure, the six
right-angled bipods are usually assumed to take on the duties of force actuators and colocated rate sensors, so
that H = G T (output state of dimension six). Tables 8 and 9 list the optimal weights found for this reduced-
order output vector for the same cases used in Table 6, when the sequential approximations and continuation

solution algorithms respectively are used. Note that the optimal weights consistently obey the trends that are
expected as the allowable output response and controller effort are altered. Even so, the designs can converge
into completely different regions of the design space for any particular case. This is illustrated by Table 10,
which gives the optimal structural design variables for the cases represented by the second column of Table 9.
Note that every solution does not define a unique local minima. Many of the solutions seem to lie in the same
local minima region, for example the solution for the case az = 1,7, and 9x 10-5. Once again, the design space
is found to have many local minima.

The two solution algorithms here seem to predict quite similar optimal weights for the cases considered,
although in general those found using the continuation method are slightly better. However, convergence for
the results using the sequential approximations solution algorithm were more difficult to obtain than those for
the continuation method. Altering the nominal move limits (set at 4-2.5%), and perhaps reducing it toward
the latter stages of each solution would aid convergence, but at increased effort on the part of the user. The
continuation results are easier to obtain since they require less individualized attention.

Comparing Tables 8 and 9 to Table 7, it can be seen that the optimal weights found when H = G T are
much larger than those found when full state feedback was used. The reason for this is the particular placement
of the disturbance forces relative to the design output states (which determine the output response). For the

133



case considered here, the DRAPER I structure is disturbed at node 1, the displacement of which is to be

kept below the design objective value a s. With full state feedback, the displacement states of node 1 are

available for feedback, whereas if H = G T, these states are not available, and the effect of the displacement

of node 1 is available only indirectly through its effect on the velocities along the six bipods that make up

the sensors. The importance of these states can be seen by examining the optimal gain matrices for the full

state feedback case. The largest gains associated with displacements and velocities in these matrices appear

in the columns corresponding to node 1 degrees of freedom, indicating that the states associated with node 1

are very important. When they are not available, the controller does not have as much information about the

state of node 1, the node it is trying to control, as it does in the case of full state feedback, and will increase

the structural stiffness (and hence mass) to compensate.

To illustrate further, consider output feedback with the displacement and velocity states of node 1 added

to the output vector used previously. The optimal weights for the same/_2 = 50 and/_s = 60 cases used in

Table 9 with this new output vector (of dimension 12 now) are given in Tables 11 and 12, when the sequential

approximations and continuation solution algorithms are used respectively. There are now larger differences

between the weights found using the two solution algorithms than in the case when H = G 7' only, with the

continuation method giving the best results (with one exception). The weights obtained using the continuation

algorithm are now very close to those obtained when using full state feedback (in Table 7), although still a

little larger in every case. This is because even with this larger output vector, the displacement states for

nodes two through four are still not used in the controller.

All the results presented so far were generated with the external stochastic disturbance intensities set at

one (Xw = I). If these intensities are varied as X_ = xwI, the effect of varying x_ on the optimal weight is
shown in Figure 6. These results were generated using the continuation solution algorithm, for the case when
c_s = 1 x 10 -5 and /_s = 50, and when all structural design variables were initially set at 120 in s. As can be

seen, the relationship between the disturbance intensity and the optimal structural weight appears basically

linear in the range shown. However, a linear fit of the data does not produce an optimum weight of zero for
a zero intensity disturbance, as would be expected. Therefore, the relationship cannot be exactly linear. The
results also indicate that the disturbance level chosen for the previous results (xw -- 1) was significant for the

range of output response and control effort constraint objectives used.

As long as the neighbouring problems in the continuation algorithm were close enough, which was satisfied

by starting from an initial point where the constraint values were "close to" their final desired locations, no

difficulties were experienced in obtaining convergence. The solution times for the continuation algorithm were

2-3 times longer than for solutions by the sequential approximations algorithm, since on average approximately
8-12 local iterations were required for convergence to the neighbouring problem for each global iteration. The

performance of the sequential approximations solution algorithm decreases as the dimensionality increases, as
evidenced by the sequence of cases where H -- G T (48 design variables), H = G T plus node 1 displacement

and velocity states (84 design variables), and H = I (156 design variables). However, the continuation method
seemed much less sensitive to the problem dimension. The continuation solution method was found to be

generally superior, for this problem at least, to the sequential approximations solution method, with respect to
the confidence in obtaining a "good" converged solution. The disparity in solution times was acceptable because

of the ease with which solutions were obtained using the continuation method, and because the solutions found

seemed to be generally much better than those found using the sequential approximations algorithm.

6 Conclusions

In this work, the integrated control/structure design optimization problem has been investigated from a re-

sponse to disturbances point of view. Both full state and output feedback controllers were employed in the

control strategy, and two solution methods were compared. It was found that for this problem, the continuation

method coupled with a sequential linear programming approach performed better than the more traditional

type of nonlinear approximations approach, in the sense that it was more robust to changes in the arbitrary

parameters set by the user, obtained better results, and the results were easier to obtain. The design space was
found to exhibit multiple local minima in which the solution could become trapped, although the continuation

solution method seemed to handle the corrugated design space better than the other method. In future work,

more diverse controller types must be considered, along with structures consisting of more complicated finite
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elements than simple truss members. Additionally, more realistic problems of higher dimension must be solved,

to demonstrate the practicality of this design procedure.
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Figure 1: The DRAPER I Structure
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Figure 2: The disturbance model

1 2847.1 2991.4 I 2107.4 I 2924.9

2 2077.3 2030.8 I 1914.4 I 1289.7

3 1878.0 1658.9 I 1472.9 I 1216.8

4 1548.3 1409.7 I 1653.2 I 1021.5

5 1418.9 1319.2 I 1459.5 I 937.4

6 1460.6 1209.5 964.9 I 1009.8

7 1209.0 1076.0 928.7 I 1052.7

8 1066.7 1214.1 987.9 I 790.2

9 1126_3 940.5 854.0 1 720.1

10 971.9 1035.1 766.4 970.6

Table h Optimal weight using a modal state-space realization, the

symmetric set of initial conditions, and inverse design variable approx-

i,na.tions.
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Scaled DV

Final DV

1

2

3

4

5

6

7

8

9

10

11

12

_u

Av
iter. for

convergence

Scaled DV

- _ --3
z [ 2 [ 3 I 4 [ 5 [I

90.437 63.947 52.212 45.213 40.441

125.893

23.336

45.632

6.389

10.973

9.800

17.627

17.719

0.100

0.100

18.206

0.100

1.6710

1.0

44

6

36.918

73.091 70.557 49.717

53.545 36.664 21.137

15.268 14.833 35.217

10.704 5.599 6.318

5.375 12.207 4.213

6.209 6.953 5.365

8.610 10.775 5.638

0.124 8.802 0.150

13.250 0.I00 O.100

9.332 0.711 0.313

O.100 13.746 9.473

O.100 0.100 9.266

1.4574 1.2620 1.4851

l.O 1.0 l.O

19 15 32

a _(xl0 -s)
7 I 8 9

34.180 31.973 29.979

43.868

23.151

21.510

4.957

9.637

4.914

9.310

9.901

O.100

8.307

8.352

0.100

0.8632

1.0

32

10

28.594

Final DV

1 25.936 32.194 9.723 16.757 20.331

2 30.650 21.255 27.425 32.495 38.508

3 28.247 20.736 28.618 16.565 II.434

4 11.168 5.141 4.083 8.798 2.041

5 10.922 7.713 6.737 4.348 2.369

6 6.795 4.260 3.815 6.692 2.934

7 0.101 8.299 0.100 0.100 0.152

8 2..501 9.363 0.100 9.628 0.885

9 0.245 0.100 0.482 1.332 3.242

lO 9.107 8.183 8.3_3 0.100 5.016

II 7.744 7.379 8.218 7.737 2.532

12 8.583 0.I00 6.782 10.099 0.I00

A,, 0.7522 0.8544 0.7937 0.9117 1.7622

A v 1.0 1.0 1.0 1.O 1.0

iter. for 21 18 22 22 49

convergence

'Fable 2: Optimal design variables for _7 = 50

! Bc- 11c-21C e3 IC' 4I C 59
Final Wt. 2451.3 2053.0 2090.6 1915.6 2067.0

Final DV

1 73.849 41.076 55.595 38.306 60.319

2 70.699 49.211 55.391 68.734 48.760

3 13.262 74.820 58.403 44.107 50.104 _

4 16.100 2.146 1.6065 1.227 2.841

5 7.730 1.843 1.4806 1.612 2.169

6 8.068 1.819 1.5676 3.161 2.834

7 3.864 O.1OO 0.I00 0.I00 0.170

8 20.163 0.I00 0.I00 0.451 0.I00

9 21.568 0.I00 0.I00 7.939 8.984

I0 5.694 0.I00 0.I00 0.I00 O.lO0

II O.IO0 0.I00 O.lO0 0.I00 0.I00

12 0.100 0.100 0.100 0.100 9.014

A, 0.9765 3.1055 3.3391 2.6755 2.5236

For all j _ 1, the initial conditions are:

Case h Pt = Pj

Case 2: Ih = Pi + 39[

Case 3: pt = pi +6%

Case 4: pl = pj + 10%

Case 5: Pt = Pi + 50%

For all cases, (A,,)o = 1.0, ('_,,)o = 1.0

Table 3: Opti,nal values when 3 _ = 75 and a s = 1 x 1O-s for differing

initial conditions, when using a modal slate space model
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Figure 3: Constraint surfaces between cases lisled in Table 3
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o'(xlO-')0 60 I 70 180
I _ 7.12466.02166.61969.2

2(] 5.9 1782.1 1579.7 1443.2

•" l{];5.6 1478.8 1327.5 1197.2

14 0.9 1298.0 1162.0 1052.0

.' 11 15.2 I174.2 1049.3 952.1

' I_ 7.0 1083.2 965.9 880.0

II ;4.1 1012.4 901.4 823.8

I_ ;5.7 955.3 849.4 776.5

(. I{] 4.5 907.9 806.4 735.3

I } II _ ;1.3 861,0 770.0 700.2

I'M,h' l: OptimM weight using a nlo,lal state-space realization and

i.v.,rse design variable approximations, where the initial condition for

_.nch case is {he converged solution from the previous case.

_--_- [ initial dv I optimal weight [ iterations

_" --501e =6___A_tAL__

2 i _.0 1,724.3
3 J 90.0 I .'191.T
4 I 6o0 R_9508

i 5 I 900 1_o.56 I 9o.o 1,629.7
7 I 60.9 I 1443.0

][ 8 ] 60.0 [I 1325.6

.. 9 I 60.0 ][ 1688.2
II 1o [ 6o.o I11604.4

3548.4 220 I 3OO" II

2490.7 202 I 300" II

2083.1 231 I 300" l[

1771.3 188 I 300 ° II

1702.5 300* I 181 I[

1443.9 300" I 300* I[

1395.0 207 [ 181 II

1247.4 300" [ 300" I[

1591.6 119 I 123 II

1487.0 126 I 127 J]

lahlc 6: Optimal weight using sequential appproximafions sol,lion

algoril hnt without scaling for fidl state feedh_:k, a phy_i(rJ state-space

le,'qizafiotL and iuvrrse design variable alq_roxlmatlons.

[-'--_----] initial dv's [ optima, weight

(structural)

[ 1 [20.0 13255.6 3013.7 II
U

I 2 90.0 [2291.0 2116.4

I 3 90.0 I 1864.9 1737.2

I ,1 90.0 I 1617.7 1630.3

I 5 90.0 I 1450.0 1447.6

I 6 90.0 I 1321.6 1221.0

I 7 60.0 I 1226.8 1135.0

i 8 60.0 I 1143.9 1064.0

i 9 60.0 I 1085.4 1002.9

6O.0 I 1024.3 961______:8

lame 7: Optimal weight using continuallon solution algorithm without

staling ,or full state feedback, and a physical state-space realization.

I] _,, initial dv's /_z

(xl0 -s) ,(structural) 50 I 60

90.0 3553.6 I 3170.5

90.0 2744.5 I 2586.7

90.0 2511.8 I 2388.8
l

5 [ 90.0 2090.7 [ 2004.6

6 I 90.0 1954.7 I 1830.1

7 S0.0 1797.0 i 1698.4

8 60.0 1683.6 ] 1585.0

9 60.0 1584.3 [ 1496.5

I0 50.0 1503.4 I 1420,1

Tat,le 9" Optimal wcigh! using continu_lion sol,tion algorithm for di-

i,','! _mtlnlt feedback with II : _T, attd a physical stale space realiza-

Final DV

1

2

3

4

5

6

7

8

9

I0

II

12

_u

Av
iter. for

convergence

125.893 82.406 66.777 57.864

23.336 19.075 16.010 14.170

45.632 36.194 29.987 26.286

6.389 6.372 5.386 4.736

10.973 8.135 6.487 5.952

9.800 8.558 7.433 6.631

17.627 12.148 12.085 9.342

17.719 10.689 8.446 6.718

0.100 0.100 0.16O ' O.100

0.100 0.100 0.100 ! 0.100

18.206 11.326 8.820 8.172

0.16O 0.1O0 0.100 O.lO0

1.6710 1.6281 1.6293 1.6325

1.0 1.0 1.0 1.0

44 16 2 2

50.877

13.257

23.752

4.105

5.429

6.031

11.208

5.422

O.lOO

0.100

7.764

0.100

1.6273

1.0

2

a_ (xlO-,)
6171819110

!

40.259 37.112 33.742

11.108 11.403 11.179

19.239 18.610 17.761

3.446 4.045 3.745

4.451 3.751 : 4.167

4.926 4.681 i 4.634

8.3.14 7.053 6.621 J[

4.167 5.319 5.070 I}

0.16O 0.100 0.100 If

O.lOO 0.100 0.100

6.216 4.678 5.357

O.lOO O.lOO oloo
I 1.6167 1.5670 1.55,10
I

t_l;O_  .o3

Final DV

1 II 46.745 42.850

2 II12.302 11.800
3 II21.926 20.458
4 II 3.996 3.621

5 I[ 5.144 4.708

6 ]l 5.556 5.241

7 I] 7.50l 9.330

8 II 5.286 4.390

9 II 0.100 0.100

10 II 0.100 0.100

11 II 7.237 6.603

12 II 0.100 0.100

_,, " _- _.6163

_ [ 1.o____.1=£
iter. for 2

con_ergence ____

"al Ic 5: Optimal design vadables for 3 _ = 50 cases Riven in 'I'M,h, .1

1-- z I initial dv's E'optim---_l weight iterati .....
(x)-s) (structural) I[]J__--- 60 II _' = 5¢

1{
4

5

6

7

120.0 4830.5 _616.8 U

90.0 3626.9 ; 262.8 II

90.0 2903.5 ; 668.4 II

90.0 23935 ; 324.4 II

90.0 2152.3 _054.5 II

400" 400"

223 400 °

400" 400"

400" 400"

290 400"

312 265

336 254

90.0 2067.1 1893.6 [1

60.0 1811.6 lg15.2 {I

8 60.0 1704.1 1539.7 l} 400" 400"

9 60.0 ......

10 60.0 1629.4 1487.0 [I 425 500"

• indicate_ noc--_onvet gonce in sp_:il_ed number of global iterations

Table 8: Optima{ weight ,,sing SO,luerflial apl,proximalions sohtlio.

algotith,n for direct Ollfl),lt [,.edl,a_k _illl II : (;T, a;_(I a physical
state-space realizalion.
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